A Rational Iteration Function for Solving Equations
نویسندگان
چکیده
منابع مشابه
a parametric iteration method for solving lane-emden type equations
in this paper, an analytical method called the parametric iteration method (pim) is presented for solving the second-order singular ivps of lane-emden type, and its local convergence is discussed. since it is often useful to have an approximate analytical solution to describe the lane-emden type equa- tions, especially for ones where the closed-form solutions do not exist at all, therefore, an ...
متن کاملA new iteration method for solving a class of Hammerstein type integral equations system
In this work, a new iterative method is proposed for obtaining the approximate solution of a class of Hammerstein type Integral Equations System. The main structure of this method is based on the Richardson iterative method for solving an algebraic linear system of equations. Some conditions for existence and unique solution of this type equations are imposed. Convergence analysis and error bou...
متن کاملConvergence of the multistage variational iteration method for solving a general system of ordinary differential equations
In this paper, the multistage variational iteration method is implemented to solve a general form of the system of first-order differential equations. The convergence of the proposed method is given. To illustrate the proposed method, it is applied to a model for HIV infection of CD4+ T cells and the numerical results are compared with those of a recently proposed method.
متن کاملVariational Iteration Method for Solving Telegraph Equations
In this paper, we apply the variational iteration method (VIM) for solving telegraph equations, which arise in the propagation of electrical signals along a telegraph line. The suggested algorithm is more efficient and easier to handle as compare to the decomposition method. Numerical results show the efficiency and accuracy of the proposed VIM.
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Computer Journal
سال: 1966
ISSN: 0010-4620,1460-2067
DOI: 10.1093/comjnl/9.3.304